Section 1.2 Homework Answer

Navigation   » List of Schools, Subjects, and Courses  »  Math 110A – PreCalculus I  »  Homeworks  »  Section 1.2 Homework  »  Section 1.2 Homework Sample Answers

We are showing you only the excerpt of our answer. If you need help with the complete answer email us at

Section 1.2 Homework

 

1. To find the x-intercept(s) of the graph of an equation, we set ___ equal to 0 and solve for ____.  So the x-intercept of 4y = x + 5  is ______

2. To find the y-intercept(s) of the graph of an equation, we set ____  equal to 0 and solve for ___.  So the y-intercept of 3y = x + 2  is ______

3. The graph of the equation (x  4)2 + (y  1)2 = 4  is a circle with center (xy) = ____ and radius _____

4.  Make a table of values for the equation. y = 3x + 1

x y
-2  
-1  
0  
1  
2  

 

5. Make a table of values for the equation. y = 1  x2

x y
-2  
-1  
0  
1  
2  

 

6. Make a table of values for the equation.9y = x2

x 9
-9  
-3  
0  
3  
9  

 

7. Make a table of values for the equation. y = |x|

x y
-3  
-2  
-1  
0  
1  
2  
3  

 

8. Make a table of values for the equation.y = |6  x|

x y
0  
2  
4  
6  
8  

 

9.  Find the x– and y-intercepts of the graph of the equation. (If an answer does not exist, enter DNE.)

4x  5y = 80

x-intercept (x,y) = (           )

y-intercept (x,y) = (          )

 

10.  Find the x– and y-intercepts of the graph of the equation. (If an answer does not exist, enter DNE.) y2 = 100  x2

x- intercepts (x,y) = (         ) smaller x value

                    (x,y) =  (        )  larger x value

y-intercepts (x,y) =  (        ) smaller y value

                   (x,y) = (         ) larger y value

 

11.  Find the x– and y-intercepts of the graph of the equation. (If an answer does not exist, enter DNE.) 16x2 + 4y2 = 64

x- intercepts (x,y) = (         ) smaller x value

                    (x,y) =  (        )  larger x value

y-intercepts (x,y) =  (        ) smaller y value

                   (x,y) = (         ) larger y value

 

12.  Find the center and radius of the circle.(x  2)2 + y2 = 25 

center  (x,y) = (      )

radius

 

13. Find the center and radius of the circle.

(x + 3)2 + (y + 4)2 = 36

center (x,y) =

radius

 

14.  Find an equation of the circle that satisfies the given conditions. (Use the variables x and y.)

Center (8, 2),     radius 7

 

15.  Find an equation of the circle that satisfies the given conditions. (Use the variables x and y.)

Center(9, 4);    passes through (2, 5)

 

16. Find the equation of the circle shown in the figure.

 

17.  Show that the equation represents a circle by rewriting it in standard form.

x2 + y2 2x + 10y + 1 = 0

Find the center and radius of the circle. 

center (x,y) =

radius

 

18.  Show that the equation represents a circle by rewriting it in standard form.

x2 + y2 8x + 8y + 31 = 0

 

Find the center and radius of the circle. 

center (x,y) =

radius

 

19.

Show that the equation represents a circle by rewriting it in standard form.

x2 + y2 + 4x + y + 4 = 0

Find the center and radius of the circle. 

center (x,y) =

radius

 

20.  Test the equation for symmetry. (Select all that apply.)

x = 2y4 4y2
  1. The graph is symmetric with respect to the x-axis.
  2. The graph is symmetric with respect to the y-axis.
  3. The graph is symmetric with respect to the origin.

 

21  Test the equation for symmetry. (Select all that apply.)

y = x2 + |x|
  1. The graph is symmetric with respect to the x-axis.
  2. The graph is symmetric with respect to the y-axis.
  3. The graph is symmetric with respect to the origin.

 

22.   Test the equation for symmetry. (Select all that apply.)

x2y2 + xy = 8

 

  1. The graph is symmetric with respect to the x-axis.
  2. The graph is symmetric with respect to the y-axis.
  3. The graph is symmetric with respect to the origin.

 

23.   Complete the graph using the given symmetry property.  Symmetric with respect to the origin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Need help with your discussion preparation?

Section 1.2 Homework Answer

 

This question is taken from Math 110A – PreCalculus I » Fall 2021 » Homeworks