Section 1.5 Homework Answer

Navigation   » List of Schools, Subjects, and Courses  »  Math 261 – Calculus I  »  Homeworks  »  Section 1.5 Homework  »  Section 1.5 Homework Sample Answers

We are showing you only the excerpt of our answer. If you need help with the complete answer email us at

Section 1.5 Homework

 

1.  Use the given graph of f to state the value of each quantity, if it exists. (If an answer does not exist, enter DNE.)

a.

limx2f(x)

 

b.

limx2+f(x)

 

c.

limx2(f(x)

 

d. f(2)

 

e.

limx4f(x)

 

f. f(4)

 

2.  For the function h whose graph is given, state the value of each quantity, if it exists. (If an answer does not exist, enter DNE.)

a.

limx3h(x)

 

b.

limx3+h(x)

 

c. 

limx3h(x)

 

d. h(-3)

 

e.

limx0h(x)

 

f.

limx0+h(x)

 

g. 

limx0h(x)

 

h.  h(0)

 

i

limx2h(x)

 

j. h(2)

 

k. 

limx5+h(x)

 

l.

limx5h(x)

 

 

 

3. For the function g whose graph is given, state the value of each quantity, if it exists. (If an answer does not exist, enter DNE.)

a.

limt0g(t)

 

b. 

limt0+g(t)

 

c.

limt0g(t)

 

d. 

limt2g(t)

 

e.

limt2+g(t)

 

f.

limt2g(t)

 

g. g(2)

 

h.

limt4g(t)

 

 

4. For the function f whose graph is shown, state the following. (If an answer does not exist, enter DNE.)

 

a.

limx7f(x)

 

b. 

limx3f(x)

 

c.

limx0f(x)

 

d.

limx6f(x)

 

e.

limx6+f(x)

 

f.  The equations of the vertical asumptotes

x=                      (smallest value)

x=

x=

x=                       (largest value)

 

 

5.Sketch the graph of the function.

 

 

Use the graph to determine the values of a for which 

limxaf(x)

  does not exist.  (Enter your answers as a comma-separated list.)

 

 

6. Sketch the graph of an example of a function f that satisfies all of the given conditions.

 

 

 

 

7. Sketch the graph of an example of a function f that satisfies all of the given conditions.

 

 

8. Determine the infinite limit.

limx6+x+7x6

 

9. Determine the infinite limit

limx98x(x9)2

 

 

10  Determine the infinite limit.

limx(π/2)+4xsec(x)

 

11.  Determine the infinite limit

limxπcsc(x)

 

 

12. Determine the infinite limit.

limx3+x23xx26x+9

 

 

Need help with your discussion preparation?

Section 1.5 Homework Answers

This question is taken from Math 261 – Calculus I » Spring 2022 » Homeworks