Section 1.5 Homework

Navigation   » List of Schools, Subjects, and Courses  »  Math 261 – Calculus I  »  Homeworks  »  Section 1.5 Homework

With Answers  Good news! We are showing you only an excerpt of our suggested answer to this question.  Should you need our help in customizing an answer to this question, feel free to send us an email at or chat with our customer service representative.

Section 1.5 Homework

Question

Section 1.5 Homework

 

1.  Use the given graph of f to state the value of each quantity, if it exists. (If an answer does not exist, enter DNE.)

a.

limx2f(x)

 

b.

limx2+f(x)

 

c.

limx2(f(x)

 

d. f(2)

 

e.

limx4f(x)

 

f. f(4)

 

2.  For the function h whose graph is given, state the value of each quantity, if it exists. (If an answer does not exist, enter DNE.)

a.

limx3h(x)

 

b.

limx3+h(x)

 

c. 

limx3h(x)

 

d. h(-3)

 

e.

limx0h(x)

 

f.

limx0+h(x)

 

g. 

limx0h(x)

 

h.  h(0)

 

i

limx2h(x)

 

j. h(2)

 

k. 

limx5+h(x)

 

l.

limx5h(x)

 

 

 

3. For the function g whose graph is given, state the value of each quantity, if it exists. (If an answer does not exist, enter DNE.)

a.

limt0g(t)

 

b. 

limt0+g(t)

 

c.

limt0g(t)

 

d. 

limt2g(t)

 

e.

limt2+g(t)

 

f.

limt2g(t)

 

g. g(2)

 

h.

limt4g(t)

 

 

4. For the function f whose graph is shown, state the following. (If an answer does not exist, enter DNE.)

 

a.

limx7f(x)

 

b. 

limx3f(x)

 

c.

limx0f(x)

 

d.

limx6f(x)

 

e.

limx6+f(x)

 

f.  The equations of the vertical asumptotes

x=                      (smallest value)

x=

x=

x=                       (largest value)

 

 

5.Sketch the graph of the function.

 

 

Use the graph to determine the values of a for which 

limxaf(x)

  does not exist.  (Enter your answers as a comma-separated list.)

 

 

6. Sketch the graph of an example of a function f that satisfies all of the given conditions.

 

 

 

 

7. Sketch the graph of an example of a function f that satisfies all of the given conditions.

 

 

8. Determine the infinite limit.

limx6+x+7x6

 

9. Determine the infinite limit

limx98x(x9)2

 

 

10  Determine the infinite limit.

limx(π/2)+4xsec(x)

 

11.  Determine the infinite limit

limxπcsc(x)

 

 

12. Determine the infinite limit.

limx3+x23xx26x+9

 

 

Need help with your discussion preparation?

This question is taken from Math 261 – Calculus I » Spring 2022 » Homeworks